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Goals of Generation IV

® Sustainability:
— Generation IV nuclear energy-systems will provide
sustainable energy generation that meets clean air
objectives and promotes long-term availability of

systems and effective fuel utilization for worldwide
energy production.

— Generation IV nuclear energy-systems will minimize
and manage their nuclear waste and notably reduce
the long-term stewardship burden, thereby improving
protection for the public health and the environment.

® EConomics:
— Generation IV nuclear energy systems will have a

clear life-cycle cost advantage over other energy
sources.

— Generation IV nuclear energy systems will have a
level of financial risk comparable to other energy
projects.



Goals of Generation IV

e Safety and Relianility:
Generation IV nuclear energy systems operations will

excel in safety and reliability, they will have a very low
likelihood and degree of reactor core damage and

Generation 1V nuclear energy systems will eliminate the
need for offsite emergency response.

® Proliferation Resistance and Pnysical Protection:
Generation IV nuclear energy systems will increase the
assurance that they are very unattractive and the least
desirable route for diversion or theft of weapons-usable

materials, and provide increased physical protection
against acts of terrorism.



Application of 6en IV Reactors
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Generation IV Deloyment

Schedule

Generation 1V System

Sodium Cooled Fast Breeder (SFR) 2015
Very High Temperature Reactor (VHTR) 2020
Gas cooled Fast Reactor (GCR) 2025
Molten Salt Reactor (MSR) 2025
Super Critical Water Reactor (SCWR) 2025
Lead Cooled Fast Reactor (LFR) 2025




Generation IV 6eneral Design

(ATW 12/06)

Neutron  Coolant  Temp. Fuel Fuel cycle Size(s)

spectrum (°C) (MWe)
Sodium-cooled Fast fast sodium 550 U-238 & closed 150
Reactors (SFR) MOX 1,500
Very High thermal helium 1,000 UO, prism or open 275
Temperature pebbles
Gas Reactors (VHTR)
Gas-cooled Fast fast helium 850 U-238 closed 275
Reactors
(GFR)
Supercritical Water- thermal or ~ water 500 UO, or MOX open 10-100
cooled Reactors fast (thermal) 600
(SCWR) or closed

(fast)

Lead-cooled Fast fast Pbor  480-800 U-238 closed 10-100
Reactors (LFR) Pb-Bi 600
Molten Salt Reactors epithermal  fluoride  700-800 UF in salt closed 1,000

(MSR) salts



Sodium Cooled Fast Reactor
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Sodium Cooled Fast Reactor
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Sodium Cooled Fast Reactor System

e The Sodium-Cooled Fast Reactor (SFR) system features a fast-spectrum
reactor and closed fuel recycle system.

e Power may range from a few hundred MWe to large monolithic
reactors of 1500-1700 MWe.

e Sodium core outlet temperatures are typically 530-550°C.

e Either pool layout or compact loop layout is possible.

e Large margin to coolant boiling is achieved by design, and is an
Important safety feature of these systems. Another major safety feature
Is that the primary system operates at essentially atmospheric pressure,
pressurized only to the extent needed to move fluid.

e Sodium reacts chemically with air, and with water, and thus the design
must limit the potential for such reactions and their consequences. To
Improve safety, a secondary sodium system acts as a buffer between
the radioactive sodium in the primary system and the steam or water. If
a sodium-water reaction occurs, it does not involve a radioactive
release.



Gas Cooled Fast Reactor
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Gas Cooled Fast Reactor
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Gas-Cooled Fast Reactor System

The GFR system features a fast-spectrum helium-cooled
reactor and closed fuel cycle.

The high outlet temperature of the helium coolant makes
It possible to deliver electricity, hydrogen, or process heat
with high conversion efficiency.

The GFR uses a direct-cycle helium turbine for electricity
and can use process heat for thermo-chemical production
of hydrogen.

The GFR’s fast spectrum also makes it possible to utilize
avalilable fissile and fertile materials (including depleted
uranium from enrichment plants) two orders of magnitude
more efficiently than thermal spectrum gas reactors with
once-through fuel cycles.

The GFR reference assumes an integrated, on-site spent
fuel treatment and re-fabrication plant.



Lead-Cooled Fast Reactor System
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Lead Cooled Fast Reactor

Reference values
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Lead Cooled Fast Reactor System

LFR systems are Pb or Pb-Bi alloy-cooled reactors with a fast-neutron
spectrum and closed fuel cycle.

e Options include a range of plant ratings, including a long refueling
Interval battery ranging from 50-150 MWe, a modular system from
300-400 MWe, and a large monolithic plant at 1200 MWe.

e It had the highest evaluations to the Generation IV goals among the
LFR options, but also the largest R&D needs and longest development
time.

e The nearer-term options focus on electricity production and rely on
more easily developed fuel, clad, and coolant combinations and their
associated fuel recycle and refabrication technologies.

e The longerterm option seeks to further exploit the inherently safe
properties of Pb and raise the coolant outlet temperature sufficiently
high to enter markets for hydrogen and process heat, possibly as
merchant plants.



Molten Salt Reactor

Conftrol
Rods

Coolant Salt Gene :
C \ eneralor Electrical
Reactor I l Power

—

Turbine

f

Pump ==—% Recuperator

Heat’
Exchanger
Chemical
Processing

Inter-
COOEr -

Compressor

e k. Heat
Emergency Dump Tanks Exchanger

——




Molten Salt Reactor
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Molten Salt Reactor System

The MSR produces fission power in a circulating molten salt fuel
mixture fuelled with uranium or plutonium fluorides dissolved in a
mixture of molten fluorides, with Na and Zr fluorides as the primary
option.

MSRs have good neutron economy, opening alternatives for actinide
burning and/or high conversion

High-temperature operation holds the potential for thermo-chemical
hydrogen production

Molten fluoride salts have a very low vapour pressure, reducing
stresses on the vessel and piping

Inherent safety by fail-safe drainage, passive cooling low inventory
of volatile fission products in the fuel

Refuelling, processing, and fission product removal performed
online, potentially yielding high availability

MSRs allow the addition of actinide feeds to the homogenous salt
solution without blending and fabrication needed by solid fuel
reactors.



Supercritical Water Cooled Reactor




Supercritical Water Cooled Reactor
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Supercritical-Water-Cooled
Reactor System

SCWRs are high-temperature, high-pressure water- cooled reactors
that operate above the thermodynamic critical point of water
(8374°C, 22.1 MPa)

These systems may have a thermal or fast-neutron spectrum,
depending on the core design.

SCWRs offer increases in thermal efficiency relative to current-
generation LWRs. The efficiency of a SCWR can approach 44%,
compared to 33-35% for LWRs.

A lower-coolant mass flow rate per unit core thermal power .This
offers a reduction in the size of the reactor coolant pumps, piping,
and associated equipment, and a reduction in the pumping power.
Steam dryers, steam separators, recirculation pumps,



Very High Temperature Reactor
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Very High Temperature Reactor
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Very High Temperature Reactor
Systems

e The VHTR is a next step in the evolutionary development of high-temperature gas-cooled
reactors. It is a graphite-moderated, helium-cooled reactor with thermal neutron spectrum.
and can supply nuclear heat with core-outlet temperatures of 1000°C. The core can be a
prismatic block core such as the operating Japanese HTTR, or a pebble-bed core such as
the Chinese HTR-10.

e The VHTR produce hydrogen from only heat and water using thermo-chemical iodine-
sulfur (I-S) process It can yield over 2 million normal cubic meters of hydrogen per day.
The VHTR can also generate electricity with high efficiency, over 50% at 1000°C,
compared with 47% at 850°C in the GTMHR or PBMR.

e Core outlet temperatures higher than 1000°C would enable nuclear heat application to
such processes as steel, aluminium oxide, and aluminium production.

e For electricity generation, the helium gas turbine system can be directly set in the primary
coolant loop, which is called a

e For nuclear heat applications such as process heat for refineries, petro-chemistry,
metallurgy, and hydrogen production, the heat application process is generally coupled
with the reactor through an intermediate heat exchanger (IHX), which is called an
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Combined Thermal and Fast Fuel
Cycle

Symbiotic Fuel Cycles
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Development Costs for
6CFR & SCFR

Gas Cooled Fast Reactor Sysiem Sodium-Cooled Fasi Reacior Syatem®
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Development Costs for
LCFR & SCWCR
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Development Costs for
MSR & VHTR
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Schedule for SFR

SODIUN-COOLED FAST REACTOR SYSTEM (810 MS)
Fuelz and Walerals (160 WS)

Cixide

Advarced p=lletinng technology

Cwide fuel remote fabihcation technology sslection decision (SFR 1)

205 cladding (aelding)

Ramote maintsrance developrent

Vibrocompaction altemative

205 MOX fusl pin irmadiation

Metal

Charactarize MA b=arnirg fusls

Reducs aclinide loasss in faknic

Advarced cladding oul-of-pile tests

Irradiation tests for MA bearing fusls

Mews materials development (129 Cr farritic steals)
Aeacior Systems (140 MS)

In-s=rvics insp=ction and repair technology
Halance of Flam (50 Ws)

Increased reliability steam ganerators
Safety (160 MS5)

Fassive safsty confimmation

SASS development

Trarsient fudd testing and analysis

Severe accident behawvior testing

Dabris co-stability

Muolter fusl dischamge/disparsal
Dezign & Evaluaion (100 W)

Evaluats supsraritical S0, turbine

Freconceptual design

Wiability phass complete

Conceptual design

Analysis tools
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www.world-nuclear.orqg

For SWR 1000, BWR+90, ABWR,AP
600;ALWR: see Atomwirtschaft 4/96
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